刊名: 课程·教材·教法
Curriculum, Teaching Material and Method
主办: 人民教育出版社 课程教材研究所
周期: 月刊
出版地:北京
语种: 中文
开本: 大16K
ISSN: 1000-0186
CN: 11-1278/G4
历史沿革:
1981年创刊期刊荣誉:
国家新闻出版总署收录 ASPT来源刊
中国期刊网来源刊
2011年度核心期刊,国家新闻出版总署收录 ASPT来源刊,中国期刊网来源刊,百种重点期刊,社科双百期刊,首届全国优秀社科期刊。
让趣味和数学课堂同行
【作者】 常守俊
【机构】 湖北省襄阳市襄州区双沟镇中心学校
【正文】 学习兴趣是学生学习的内部动机,是推动学生探求内部真理与获取能力的一种强烈欲望,它在学习活动中起着十分重要的作用。教学实践表明,学生如果对数学知识充满好奇心,对学会知识有自信心,那么他们总是主动积极、心情愉快的进行学习。因此,在数学课堂教学中,我们要时刻注意发掘教材孕伏的智力因素,审时度势,把握时机,因势利导地为学生创造良好的教学情境,激发学生的兴趣,让学生在学习数学中愉快地探索。下面本人结合《三角形内角和》一课,谈几点体会。
一、开讲生趣
俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。如“三角形内角和”的引入部分,我先要求学生拿出自己预先准备的三个不同的三角形(直角、锐角和钝角三角形),各自用量角器量出每个三角形中三个角的度数,然后分别请几个学生报出不同三角形的两个角的度数,我当即说出第三个角的度数。一开始,有几位同学还不服气,认为可能是巧合,又举例说了几个,都被我一一猜对了,这时学生都感到惊奇,教师的答案怎么和他们量出的答案会一致的。“探个究竟”的兴趣因此油然而生。
二、授中激趣
开讲生趣仅作为导入新课的“引子”,那成功之路,至多只行了一半。还需要在讲授新课中适时地激发学生的兴趣,恰到好处地诱导,充分挖掘知识的内在魅力,以好奇心为先导,引发学生强烈的求知欲。比如上例新授部分,在板书课题后,接着又让全班学生动手做一个实验:分别把各自手里的三个三角形(锐角、钝角、直角三角形)的三个角剪下,再分别把每个三角形的三个角拼在一起,并言之有趣地激励学生:看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。这时,学生心中激起了层层思考的涟漪,课堂气氛既紧张又活跃,发言争先恐后。还有的学生通过把正方形的纸沿对角线对折,变成两个完全一样的三角形,因为正方形有4个直角,是360°,所以每个三角形的内角和是180°好方法。显然,此时不但学生对三角形内角和是180°的性质有了感性的基础,而且教师对这一性质的讲解也已到了“心有灵犀一点通”的最佳时刻。
三、设疑引趣
学起于思,思源于疑。“疑”是学生学习数学知识中启动思维的起点。在数学教学中,作为教师要善于提出具有引发学生思考的问题,使学生见疑生趣,产生有趣解疑的求知欲和求成心。
比如“三角形内角和”在新授结束后
师:(出示一个大三角形)它的内角和是多少度?
生:180°。
师:(出示一个很小的三角形)它的内角和是多少度?
生:180°。
师:把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度?(生有的答90°,有的180°。)
师:哪个对?为什么?
生:180°,因为它还是一个三角形。
师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?
这时学生的答案又出现了180°和360°两种。
师:究竟谁对呢?
学生个个脸上露出疑问,经过一翻激烈的讨论探究后,学生开始举手回答。
生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。
生2 :我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180°,所以大三角形的内角和还是180°,不是360°。
师:表扬:你真聪明。演示:
这里教师通过提出两个具有思考性的问题,层层设疑,使学生探究知识的兴趣波澜起伏,时刻处在紧张而又兴奋的学习状态中。
四、练中有趣
练习是巩固所学知识,形成技能技巧的必要途径,是教学的一个重要环境。但也往往被呆板的练习形式、乏味的练习内容,把在学习新知识中激发出来的学习兴趣,而无情淹没,使学生愉快的心情、振奋的精神受到严重的扼杀和抑制。因此课堂练习要设计得精彩有趣,教学中教师根据所学内容,设计不同形式的练习。
1、练习形式要注意层次性。
设计不同类型、不同层次的练习题,从模仿性的基础练习到提示的变式练习再到拓展性的思考练习,降低习题的坡度,照顾不同层次的学生,使学生始终保持高昂的学习热情。比如“三角形内角和”中在运用规律解题时, 先已知两角求第三角;再已知直角三角形的一锐角求另一角,感知直角三角形的两锐角之和是90°;最后已知三角形的一角,且另两角相等,求另两角的度数,或已知三角形三个角的度数均相等,求三角形的三个角的度数。以上设计,通过有层次的练习,不断掀起学生认知活动的高潮,学生学起来饶有兴趣,没有枯燥乏味之感。
2、练习形式要注意科学性和趣味性。
布鲁纳说过:“学习的最好刺激,是对所学材料的兴趣。”教学时可适当选编一些学生喜闻乐见的、有点情节又贴进学生生活经验以及日常生活中应用较广泛的题目,通过少量的趣题和多种形式的题目,使学生变知之为乐知。比如,本课在完成基本题后,让学生在自己的本子上画出一个三角形,要求其中两个内角都是直角。在学生画来画去都无从下手时,个个手抓脑袋,冥思苦想。这时教师说出“画不出来”的理由,学生们恍然大悟。
一、开讲生趣
俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。如“三角形内角和”的引入部分,我先要求学生拿出自己预先准备的三个不同的三角形(直角、锐角和钝角三角形),各自用量角器量出每个三角形中三个角的度数,然后分别请几个学生报出不同三角形的两个角的度数,我当即说出第三个角的度数。一开始,有几位同学还不服气,认为可能是巧合,又举例说了几个,都被我一一猜对了,这时学生都感到惊奇,教师的答案怎么和他们量出的答案会一致的。“探个究竟”的兴趣因此油然而生。
二、授中激趣
开讲生趣仅作为导入新课的“引子”,那成功之路,至多只行了一半。还需要在讲授新课中适时地激发学生的兴趣,恰到好处地诱导,充分挖掘知识的内在魅力,以好奇心为先导,引发学生强烈的求知欲。比如上例新授部分,在板书课题后,接着又让全班学生动手做一个实验:分别把各自手里的三个三角形(锐角、钝角、直角三角形)的三个角剪下,再分别把每个三角形的三个角拼在一起,并言之有趣地激励学生:看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。这时,学生心中激起了层层思考的涟漪,课堂气氛既紧张又活跃,发言争先恐后。还有的学生通过把正方形的纸沿对角线对折,变成两个完全一样的三角形,因为正方形有4个直角,是360°,所以每个三角形的内角和是180°好方法。显然,此时不但学生对三角形内角和是180°的性质有了感性的基础,而且教师对这一性质的讲解也已到了“心有灵犀一点通”的最佳时刻。
三、设疑引趣
学起于思,思源于疑。“疑”是学生学习数学知识中启动思维的起点。在数学教学中,作为教师要善于提出具有引发学生思考的问题,使学生见疑生趣,产生有趣解疑的求知欲和求成心。
比如“三角形内角和”在新授结束后
师:(出示一个大三角形)它的内角和是多少度?
生:180°。
师:(出示一个很小的三角形)它的内角和是多少度?
生:180°。
师:把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度?(生有的答90°,有的180°。)
师:哪个对?为什么?
生:180°,因为它还是一个三角形。
师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?
这时学生的答案又出现了180°和360°两种。
师:究竟谁对呢?
学生个个脸上露出疑问,经过一翻激烈的讨论探究后,学生开始举手回答。
生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。
生2 :我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180°,所以大三角形的内角和还是180°,不是360°。
师:表扬:你真聪明。演示:
这里教师通过提出两个具有思考性的问题,层层设疑,使学生探究知识的兴趣波澜起伏,时刻处在紧张而又兴奋的学习状态中。
四、练中有趣
练习是巩固所学知识,形成技能技巧的必要途径,是教学的一个重要环境。但也往往被呆板的练习形式、乏味的练习内容,把在学习新知识中激发出来的学习兴趣,而无情淹没,使学生愉快的心情、振奋的精神受到严重的扼杀和抑制。因此课堂练习要设计得精彩有趣,教学中教师根据所学内容,设计不同形式的练习。
1、练习形式要注意层次性。
设计不同类型、不同层次的练习题,从模仿性的基础练习到提示的变式练习再到拓展性的思考练习,降低习题的坡度,照顾不同层次的学生,使学生始终保持高昂的学习热情。比如“三角形内角和”中在运用规律解题时, 先已知两角求第三角;再已知直角三角形的一锐角求另一角,感知直角三角形的两锐角之和是90°;最后已知三角形的一角,且另两角相等,求另两角的度数,或已知三角形三个角的度数均相等,求三角形的三个角的度数。以上设计,通过有层次的练习,不断掀起学生认知活动的高潮,学生学起来饶有兴趣,没有枯燥乏味之感。
2、练习形式要注意科学性和趣味性。
布鲁纳说过:“学习的最好刺激,是对所学材料的兴趣。”教学时可适当选编一些学生喜闻乐见的、有点情节又贴进学生生活经验以及日常生活中应用较广泛的题目,通过少量的趣题和多种形式的题目,使学生变知之为乐知。比如,本课在完成基本题后,让学生在自己的本子上画出一个三角形,要求其中两个内角都是直角。在学生画来画去都无从下手时,个个手抓脑袋,冥思苦想。这时教师说出“画不出来”的理由,学生们恍然大悟。